Math 31 - Homework 2

Due Friday, July 6

Easy

1. Recall from the last homework assignment that if $*$ is a binary operation on a set S, an element x of S is an idempotent if $x * x=x$. Prove that a group has exactly one idempotent element.
2. [Herstein, Section $2.1 \# 5$] Let D_{4} be the 4 th dihedral group, which consists of symmetries of the square. Let $r \in D_{4}$ denote counterclockwise rotation by 90°, and let m denote reflection across the vertical axis of the square. Show that

$$
r m=m r^{-1} .
$$

Conclude that D_{4} is a nonabelian group of order 8 .
3. We mentioned in class that elements of D_{n} can be thought of as permutations of the vertices of the regular n-gon. For example, the rotation r of the square mentioned in the last problem,

can be identified with the permutation

$$
\rho=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) .
$$

Write the reflection m as a permutation $\mu \in S_{4}$, and compute the product $\rho \mu$ in S_{4}. Then compute $r m \in D_{4}$, and write it as a permutation σ. Check that $\sigma=\rho \mu$. (In other words, this identification of symmetries of the square with permutations respects the group operations.)
4. Determine whether each of the following subsets is a subgroup of the given group. If not, state which of the subgroup axioms fails.
(a) The set of real numbers \mathbb{R}, viewed as a subset of the complex numbers \mathbb{C} (under addition).
(b) The set $\pi \mathbb{Q}$ of rational multiples of π, as a subset of \mathbb{R}.
(c) The set of $n \times n$ matrices with determinant 2 , as a subset of $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$.
(d) The set $\left\{i, m_{1}, m_{2}, m_{3}\right\} \subset D_{3}$ of reflections of the equilateral triangle, along with the identity transformation.
5. [Herstein, Section $2.3 \# 1$] Let G be a group. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.

Medium

6. [Herstein, Section $1.4 \# 2$] Let S be a set, and recall that $A(S)$ is the group consisting of the bijections from S to itself, with the binary operation given by composition of functions. Given $s_{1} \in S$, define

$$
H=\left\{f \in A(S): f\left(s_{1}\right)=s_{1}\right\} .
$$

Show that:
(a) $i \in H$. (Here i denotes the identity function on S.)
(b) If $f, g \in H$, then $f g \in H$. (Note that $f g$ means $f \circ g$.)
(c) If $f \in H$, then $f^{-1} \in H$.

Looking at these three properties, what have you proven about H ?
7. [Herstein, Section $2.1 \# 18$] If G is a finite group of even order, show that there is an element $a \in G$ (with $a \neq e$) such that $a=a^{-1}$. [Hint: You may want to think about the fact that for any group element $x,\left(x^{-1}\right)^{-1}=x$.]
8. [Herstein, Section 2.3 \#4] Let G be a group. Define

$$
Z(G)=\{a \in G: a x=x a \text { for all } x \in G\} .
$$

In other words, the elements of $Z(G)$ are exactly those which commute with every element of G. Prove that $Z(G)$ is a subgroup of G, called the center of G.
9. Show that if H and K are subgroups of an abelian group G, then

$$
\{h k: h \in H \text { and } k \in K\}
$$

is a subgroup of G.

Hard

10. [Herstein, Section 2.3 \# 26] Let G be a group, and let H be a subgroup of G. For a fixed $a \in G$, define

$$
H a=\{h a: h \in H\} .
$$

Show that, given any $a, b \in G$, we have either $H a=H b$ or $H a \cap H b=\varnothing$.

